IDENTITAS TRIGONOMETRI PENJUMLAHAN DAN SELISIH DUA SUDUT

 IDENTITAS TRIGONOMETRI PENJUMLAHAN DAN SELISIH DUA SUDUT



Rumus Trigonometri Jumlah dan Selisih Dua Sudut

1.    Rumus Cosinus Jumlah dan Selisih Dua Sudut

Untuk memahami rumus cosinus perhatikan gambar di bawah. Dari lingkaran yang berpusat di O(0, 0) dan berjari-jari 1 satuan :



Dengan mengingat kembali tentang koordinat Cartesius, maka:

a. koordinat titik A (1, 0)

b. koordinat titik B (cos A, sin A)               

c. koordinat titik C {cos (A + B), sin (A + B)}

d. koordinat titik D {cos (–B), sin (–B)} atau (cos B, –sin B)

AC = BD maka AC2 + DB2

{cos (A + B) – 1}2 + {sin (A + B) – 0}2 = {cos B – cos A}2 + {–sin B – sin A}2

cos2 (A + B) – 2 cos (A + B) + 1 + sin2 (A + B) = cos2 B – 2 cos B cos A + cos2 A +

sin2 B + 2 sin B sin A + sin2 A

2 – 2 cos (A + B) = 2 – 2 cos A cos B + 2 sin A sin B

2 cos (A + B) = 2 (cos A cos B – sin A sin B)

cos (A + B) = cos A cos B – sin A sin B


Rumus cosinus jumlah dua sudut

cos (A + B) = cos A cos B – sin A sin B


Dengan cara yang sama, maka:

cos (A – B) = cos (A + (–B))

cos (A – B) = cos A cos (–B) – sin A sin (–B)

cos (A – B) = cos A cos B + sin A sin B


Rumus cosinus selisih dua sudut

cos (A – B) = cos A cos B + sin A sin B


Untuk lebih memahami aplikasi dari rumus cosinus jumlah dan selisih dua sudut, silahkan anda pelajari contoh soal berikut.


Contoh soal rumus cosinus

Diketahui cos A = 5/13 dan sin B = 24/25 , sudut A dan B lancip. Hitunglah cos (A + B) dan

cos (A – B).

Penyelesaian:

cos A = 5/13 , maka sin A = 12/13

sin B = 24/25 , maka cos B = 7/25

cos (A + B) = cos A⋅ cos B – sin A⋅ sin B

                   = 5/13 ⋅ 7/25 – 12/13 ⋅ 24/25

                   = 35/325 − 288/325

                   = − 253/325

cos (A – B) = cos A⋅ cos B + sin A⋅ sin B

                   = 5/13 ⋅ 7/25 + 12/13 ⋅ 24/25

                   = 35/325 + 288/325          

                   = 323/325

Komentar